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full partition function into “light” and “mirror” is well defined only if the two sectors

are separately anomaly free. We show that only then is the generating functional, and

hence the spectrum, of the mirror theory a smooth function of the gauge field background.

This explains how ideas to use additional non-gauge, high-scale mirror-sector dynamics

to decouple the mirror fermions without breaking the gauge symmetry — for example, in

symmetric phases at strong mirror Yukawa coupling — are forced to respect the anomaly-

free condition when combined with the exact lattice chiral symmetry. Our results are also

useful in explaining a paradox posed by a recent numerical study of the mirror-fermion

spectrum in a toy would-be-anomalous two-dimensional theory. In passing, we prove some

general properties of the partition functions of arbitrary chiral theories on the lattice that

should be of interest for further studies in this field.
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1. Introduction and summary

1.1 Motivation

The study of strong-coupling chiral gauge dynamics is an outstanding problem of great

interest, both on its own and for its possible relevance to phenomenology. Whereas the

standard model of elementary particle physics is a weakly coupled chiral gauge theory,

additional strong chiral gauge dynamics at (multi-) TeV scales may be responsible for

breaking the electroweak symmetry and fermion mass generation.

Several different approaches are currently available for the study of the strong-coupling

behavior of chiral gauge theories. Notably, one has ’t Hooft’s anomaly matching and most

attractive channel arguments, which are complemented by the “power of holomorphy” in

supersymmetric theories. Scaling arguments and effective NJL-like models, both using re-

sults from QCD as a stepping stone, have also been employed extensively; on the other
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hand, large-N expansions, including the recently considered gravity duals in the AdS/CFT

(AdS/QCD) framework, do not usefully apply to chiral gauge theories. None of these

approaches represents a “first principles” method, with an accuracy that can be systemat-

ically improved. The space-time lattice regularization remains, to this day, the only way

offering hope for such a systematic progress.

During the past two decades, since the work of Ginsparg and Wilson (GW) [1], there

has been significant progress in understanding chiral symmetries on the lattice [2]–[7];

further references are given in the reviews [8, 9], while [10 – 12] contain more recent work.

Recently, the existence of an exactly gauge invariant1 lattice construction of anomaly-

free chiral gauge theories using exact lattice chiral symmetries has been proven in several

particular cases [9, 13]. However, an explicit formulation of the action and measure outside

of perturbation theory is currently not available. We thus believe that the further study of

the problem, the consideration of new proposals, and of their relationship to old and new

advances in the field is a worthwhile task.

1.2 What this paper is about

In essence, this paper is about revisiting an old idea [21] in light of the new understanding

of exact lattice chirality. The idea is to begin with a vectorlike theory, whose explicit lattice

formulation poses no problems. The chiral components of the vectorlike fermions are split

into “light” and “mirror” fermions. The “light” fermions have the chirality and group

representations of the desired target chiral gauge theory and the “mirrors” are simply their

opposite-chirality partners. The vectorlike theory is then deformed in a way that (ideally)

only affects the “mirror” fermions: for example, one adds appropriate Yukawa interactions,

or four- and multi-fermion interactions. The goal of the deformation is to ensure that, when

the parameters of the deformation are chosen appropriately, the mirror fermions decouple

without breaking the gauge symmetry. Thus, at low energies, the desired unbroken chiral

gauge theory is supposed to emerge.

The decoupling of “mirror” fermions in chiral representations without breaking the chi-

ral symmetry (which is gauged in chiral gauge theories) is possible in the so-called strong-

coupling symmetric phases of lattice Yukawa [24 – 27] or multi-fermion-interaction [21] the-

ories (earlier, the possibility of nonzero fermion masses without chiral symmetry breaking

has been discussed, for two dimensional models, in [28]).

From the continuum physics point of view, the strong-coupling symmetric phases are

a lattice artifact. Their existence, in either two or four dimensions, is established using

the lattice strong-coupling expansion, where all correlations have a range smaller than the

lattice spacing. One can thus say that in models with a strong-coupling symmetric phase

and heavy mirrors, their mass is “higher than the ultraviolet cutoff”—the physics at high

scales being that of lattice particles with small site-to-site hopping probability. The strong-

1There also exists a point of view [14] that an exact gauge invariance at finite lattice spacing may

not be necessary and that “gauge averaging” of the fermion determinant will wash out, by a mechanism

due to [15, 16], any gauge-breaking effects in the continuum limit in the anomaly-free case. While some

numerical evidence supports this view [17, 18], the issue is far from settled, see [19] and the review [8]. For

other ideas giving up exact gauge invariance, see [20, 10].

– 2 –



J
H
E
P
0
8
(
2
0
0
7
)
0
8
1

coupling symmetric phases of lattice Yukawa or multi-fermion interaction models are thus

analogous to the well-known high-temperature disordered (hence symmetric) phases of spin

systems.

For the continuum physicist, who is unlikely to proceed past this Introduction, we

will now give a cartoon-like continuum description of the physics. This will also serve to

illustrate the idea behind using strong interactions to decouple the mirrors and help us

state the main issues we would like to address.

Consider thus the classic example of a four-dimensional chiral gauge theory with non-

trivial strong-coupling dynamics — see, e.g., [29]—an SU(5) gauge theory with a 5∗ and

a 10 Weyl fermion representation. We use two-component spinor notation to describe the

desired “light” fermions:

ψi
α ∼ 5∗, χij α ∼ 10 , ζα ∼ 1 , (1.1)

(here i denotes an SU(5) (anti-)fundamental and α = 1, 2, an SL(2, C) index) and their

“mirror” partners:

ηiα ∼ 5, ρij
α ∼ 10∗ , ξα ∼ 1 . (1.2)

In this notation a Dirac mass term for the 5 would be ψiαηiα+h.c.. The gauge singlet Dirac

fermion (with Weyl components ζ, ξ) is a field whose ξ component will play an important

role in the strong mirror dynamics; an entire singlet Dirac multiplet was added to make

sure the fermion representation (1.1), (1.2) is vectorlike and thus easy to put on the lattice.

The target SU(5) chiral gauge theory has one anomaly-free U(1) global symmetry,

under which ψi has charge −3 and χij charge 1; on the other hand, the vectorlike theory

with fermion content (1.1), (1.2) has more exact global symmetries. Now, to decouple the

mirrors (1.3), one adds interactions involving (ideally) only the mirror fields, of the form:

λ ξα ηi
αηj βρij β + . . . (1.3)

where the dots denote terms needed to break the extra global symmetries.

The main insight helping to decouple the mirrors is the realization that the strong

lattice four-fermi interaction (1.3) can lead to the formation of SU(5) invariant mirror

composite states, which can acquire mass without breaking SU(5). We stress again that

the strong-coupling symmetric phase and the formation of the singlet mirror composite

states requires λ ≫ 1 in UV-cutoff units; this only makes sense on the lattice, and the

spectrum can be studied using the strong-coupling expansion (for details, see the appendix

of ref. [21]). For example, a possible composite of the mirror fermions is the ηηρ (5-5-10∗)

invariant appearing in (1.3). It can acquire a large Dirac mass by pairing with the singlet

mirror field ξ and can thus decouple from the low-energy physics without breaking the

SU(5) symmetry; at strong coupling all mirror fermions are similarly bound in massive

composites and decouple.2 Since the SU(5) gauge interaction is asymptotically free, the

2Ideas involving strong-Yukawa symmetric phases work similarly [24 – 27] and are closely related to the

multi-fermion interaction ones [32].
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strong mirror dynamics at and above the cutoff scale should have a parametrically small

effect on the infrared chiral dynamics. Thus, the desired unbroken chiral gauge theory with

massless fermion spectrum (1.1) is recovered in the infrared.

The idea to decouple the mirrors in the way described above is attractive and many

important advances in understanding the strong-coupling symmetric phases in both Yukawa

and multi-fermion-interaction theories were made in the past. However, in all cases studied,

the spectrum of massless fermion states (when they existed) was found to be vectorlike:

(i) The most notable reason is the fact that on the lattice — until the recent advances in

exact lattice chirality — there was no way to define chiral components of the spinors

at finite lattice spacing while avoiding fermion doubling. Because chiral symmetries

are broken on the lattice with the traditional Wilson formulation, the strong inter-

actions (1.3) were, in all cases, also “felt” by the “light” fermions, causing either

the “light” fermions to obtain mass or the “mirror” fermions to become massless;

see [30 – 32].

(ii) Moreover, since the SU(5) gauge dynamics is only a spectator of the strong inter-

actions whose purpose is to decouple the mirrors, it is not clear how the non-gauge

strong interactions of the mirror sector were supposed to “know” about chiral gauge

anomalies and how they would decide to “enforce” the anomaly-freedom requirement

on the light chiral spectrum or else, break the gauge symmetry [35 – 38].3

In this paper, we will address the above issues by using the exact chirality-preserving

GW-fermion formulation of lattice vectorlike theories via the Neuberger-Dirac operator:

• It is well known that the GW-fermion formulation allows one to define chiral compo-

nents of the spinors at finite lattice spacing without introducing doublers. The “light”

chiral components can be then excluded from participating in the strong “mirror”

interactions, like the one in (1.3). The lattice theory can then be arranged to have

exactly the global symmetries and anomalies of the target continuum chiral theory,

something that earlier Yukawa or four-fermi proposals could not achieve [12].

• Furthermore, by considering in detail the split of the vectorlike lattice partition func-

tion into “light” and “mirror” parts in an arbitrary gauge background, we will show

that the anomaly-free condition on the light spectrum is also enforced by consistency

of the GW formulation of lattice chirality. We will make extensive use of the work

of Neuberger [6] and Lüscher [13] on chiral anomalies in the overlap/GW-fermion

formalism, see also [33]

The proposal to use strong-coupling Yukawa models with GW fermions to decouple the

mirrors in a vectorlike gauge theory was made in [12], where the many desirable features

of such a formulation were pointed out.4 The proposal is attractive, as it gives an explicit

3For example, ref. [32] found that in the model of [21] the non-gauge mirror dynamics was essentially

the same in models with anomaly-free and anomalous fermion spectrum.
4We note that ref. [34] made an earlier suggestion along similar lines, in the framework of a domain wall

with a finite fifth dimension.
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gauge-invariant definition of the measure and lattice action, and because it has all the right

symmetries and anomalies of the target chiral gauge theory already at finite lattice spacing.

However, this elegance comes at a price — the study of the mirror dynamics at strong

coupling, which is needed to show that the mirrors do indeed decouple, is complicated by

the exponential-only locality of the Neuberger-Dirac operator [39, 40]. The strong-coupling

expansions used in relatively simple models [21, 24 – 27, 30 – 32] to predict the formation of

heavy fermion composites without breaking the chiral symmetry are not easy to implement

and a Monte-Carlo study is called for.

A numerical study of the strong-coupling mirror dynamics of a toy two-dimesional

model was performed in [41], for a vanishing gauge background. The numerical evidence

found there indicates that, indeed, the mirror sector decouples at strong mirror Yukawa

coupling. The questions of gauge anomalies in the light target theory and the ways the

dynamics would prevent them was not addressed. This is the main issue we focus on in

this paper.

1.3 Outline and summary of results

Much of the discussion in this paper is rather technical. Here we outline the main points

and summarize our results. The reader is assumed to be familiar with the GW relation and

the exact lattice chiral symmetry in vectorlike theories; for a review, see [9] and references

therein (our notation for the Neuberger-Dirac operator, the modified-γ5 projectors, and

their eigenvectors is established in section 2.1).

In section 2.2, we consider in detail how the partition function of a vectorlike theory

splits into left- and right- chirality components, using the eigenvectors of the modified-γ5

as basis. We also explicitly work out the transformations of the left- and right- chirality

partition functions and of the Jacobian under changes of the gauge background.

In section 3, we turn to the description of what we call the “1-0” model: a toy two

dimensional model, used in a Monte-Carlo study of the decoupling of the mirrors in the

strong-Yukawa symmetric phase [41]. We show how the partition function of this model

(with vectorlike fermion content) splits into a “light” and “mirror” part in an arbitrary

gauge background. Only the “mirror” degrees of freedom participate in the strong Yukawa

interaction, which is introduced to decouple the “mirrors” from the long-distance physics

(similar in spirit to (1.3)).

Using the results of section 2.2, we then work out the gauge transformations of the

“light” and “mirror” partition functions and show that the gauge transformation of the

“mirror” partition function precisely cancels the anomaly of the light fermions, independent

of the value of the mirror Yukawa coupling(s) and for arbitrary gauge backgrounds.

We then contrast this finding with the numerical results of [41]. The Monte-Carlo

simulation of the mirror dynamics at strong Yukawa coupling and in vanishing gauge

background provided evidence for the decoupling of the mirror sector without breaking

the gauge symmetry (i.e., of the existence of the desired strong-Yukawa symmetric phase

with heavy mirrors). The massless spectrum of the theory consists of a left-handed fermion

of unit charge and a right-handed singlet under the gauge group. These numerical results,

combined with the exact gauge transforms of the mirror partition functions worked out
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above, present us with a paradox. If the decoupling of the mirrors at strong Yukawa

coupling and zero gauge background persists also for an infinitesimal gauge background,

as one would naively expect based on “continuity”, it is not clear how the heavy degrees

of freedom could conspire to cancel the anomaly of the massless fermions. (see also the

addendum for more discussion.)

As already alluded to, the resolution of the paradox is in the assumption of the conti-

nuity. It turns out that the “light”–“mirror” split of the partition function of the vectorlike

theory is only well-defined if the light and mirror representation are separately anomaly-

free. The results of the Monte-Carlo simulations in the “1-0” model hold for the trivial

(U = 1) gauge background. However, we will show that the mirror partition function is

not a smooth function of the gauge background precisely at U = 1 and that this singularity

prevents any discussion of the mirror spectrum in general backgrounds.

We explain in detail how this comes about in sections 4 and 5. There, while still with

the “1-0” model in mind, we switch the focus of our discussion to the most general form

of chiral theories and study their properties based only on their defining characteristics.

Many results found there are therefore of general applicability and should be important for

further studies of chiral theories on the lattice.

We begin, in section 4.1 with a discussion of the dependence of the modified-chirality

basis vectors on the gauge-field background; the material of this section is known, but for

completeness we present a short self-contained derivation.

In section 4.2, we prove our main result on the variation of the most general chiral

partition function under changes of the gauge background. We show that the variation

of the partition function defined with an arbitrary chiral action always factorizes into a

variation that depends on the basis vectors and a variation only due to the dependence

of the operators included in the action on the gauge background. This generalizes the

known results for simple actions; see section (2.2). It is an important piece of knowledge

since it isolates the anomalies from the details of the chiral theory and manifestly realizes

on the lattice the idea that anomalies are determined only by the representation of the

fields and not by the details of the Lagrangian. It has at least a few surprisingly powerful

implications, one of which will be explained in section 5.

In section 4.3 and 4.3.1 we explain how, in the case of an anomalous representation,

the chiral fermion measure can not be defined as a smooth function of the gauge back-

ground. We use the Wilson-line subspace of the gauge field background to illustrate,

following [6], the topological obstruction of defining a smooth fermion measure due to the

anomaly. We explicitly show that in our “1-0” toy model the mirror-fermion measure is

not a smooth function of the gauge fields exactly at vanishing gauge background. We then

explicitly demonstrate (within the Wilson-line subspace only) how to construct smooth

fermion measures in the case of anomaly-free representations, for example, in the “3-4-5”

model [12] by showing how the singularities due to different representations can cancel each

other and how the phase ambiguity of the chiral partition function enters to help.

Finally, in section 5, we consider an interesting application of the results proven in

section 4.2 to show that the generating functional of the mirror theory is indeed a smooth

function of the gauge background as long as the mirror representation is anomaly free.
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Thus, as an encouraging message of this paper, one expects that a demonstration of the

decoupling of the mirror sector in an anomaly free model at vanishing gauge background

will persist, by smoothness, also for small gauge background, e.g., in perturbation theory

with respect to the gauge coupling. The proof given in this section is also a general result

independent on the details of the mirror action, and therefore the conclusion found there

remains true for any well-behaved chiral theory as long as the anomaly-free condition is

satisfied.

1.4 Outlook

The main statement we make in this paper is that the splitting of vectorlike partition

functions into “light” and “mirror” parts is smooth, as a function of the gauge field back-

ground, only if the mirror and light fermion representations are separately anomaly free.

This is a comforting result as it explains how the non-gauge dynamics introduced to de-

couple the mirrors is forced to obey the anomaly free condition, if one wishes to generalize

the results to a full theory with dynamical gauge fields. If the gauge field is taken as fixed

external background only, there might also exist other mechanisms that force the anomaly

cancellation conditions as explained in the addendum.

We think that this result encourages further study of the decoupling of the mirror

fermions in anomaly-free representations via strong lattice-cutoff-scale dynamics, such as

that of strong-Yukawa symmetric phases. The next most important question is, of course,

to demonstrate that the strong mirror dynamics does indeed cause the mirrors to decouple

in anomaly-free cases and for trivial gauge background.

We stress the main advantages of the approach studied here: the fermion measure is

well defined (as it is the trivial measure of the vectorlike theory), the global symmetries

are realized exactly as in the desired target theory, and the partition function is exactly

gauge invariant. Symmetry and beauty aside, the ultimate goal of the approach is to be

useful for actual numerical simulations of chiral gauge theories. Whether this will happen

depends on many yet unknown factors, notably the possible complexity or sign problem

of the partition function. Here we only note that, in zero gauge background, the partition

function of the “1-0” model at infinite Yukawa coupling was found in [41] to be real and

positive; this raises hopes that in the theory with dynamical gauge fields the phase problem

may be not too severe at large values of the Yukawa coupling. This issue certainly deserves

more attention.

Finally, as already mentioned, the analytic strong-coupling expansion using the

Neuberger-Dirac operator is complicated by its exponential-only locality [39, 40], lead-

ing one to suspect that Monte-Carlo simulations may appear as the only tool to study the

strong-coupling mirror dynamics. However, we note the recent work [45] on an analytic

strong-coupling expansion in some four-dimensional Yukawa models with GW fermions

(at vanishing gauge background). Within the approximations used, analytic evidence —

backed up by results of recent Monte-Carlo simulations [46]—for the existence of a strong-

coupling symmetric phase was found. It may thus be interesting to study the possible

application of these methods to models designed to decouple mirror fermions.
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2. Splitting partition functions of vectorlike theories into chiral compo-

nents

2.1 Notations and basis vectors

In terms of the massive Wilson operator DW , the modified-γ5 matrix γ̂5 and the Neuberger-

Dirac operator D are expressed as [9]:

γ̂5 =
γ5A

√

(γ5A)2
, A ≡ 1 − DW , D ≡ 1 − γ5γ̂5 , (2.1)

where D transforms covariantly under gauge transforms, Dxy → eiωxDxye
−iωy and the

Ginsparg-Wilson (GW) relation is equivalent to γ̂2
5 = 1. Next define the following complete

set of states:

γ̂5ui = −ui , γ̂5wi = wi (2.2)

P̂− =
∑

i

uiu
†
i , P̂+ =

∑

i

wiw
†
i = 1 − P̂− , (2.3)

where we treat u,w as columns and u†, w† as rows. For a topologically trivial background,

the number of u and w eigenvectors is the same, equal to N2 each for a two-dimensional

square lattice (2N2 total dimension).5 We also define the eigenvectors of γ5, which can be

chosen independent of the gauge background:

γ5vi = vi , γ5ti = −ti (2.4)

P+ =
∑

i

viv
†
i , P− =

∑

i

tit
†
i = 1 − P+ . (2.5)

2.2 Chiral variables, Jacobians, and their variations

Consider a vectorlike lattice theory with partition function:

ZV =

∫

∏

x

dΨxdΨ̄x eS , (2.6)

where x denotes both spinor and spacetime lattice indices. For the time being, we will take

the action S to be the usual kinetic action S =
∑

x,y ψ̄xDx,yψy ≡ (Ψ̄ ·D ·Ψ), which has an

exact chiral symmetry, Ψ → eiαγ̂5Ψ, Ψ̄ → Ψ̄eiαγ5 .

Now we change variables from Ψx, Ψ̄x to c±i , c̄±i defined by the following expansions in

terms of the γ5 and γ̂5 eigenvectors (we let x also include spinor index, thus x takes 2N2

values in 2d):

Ψx =
∑

i

c+
i wi(x) + c−i ui(x) (2.7)

Ψ̄x =
∑

i

c̄+
i t†i (x) + c̄−i v†i (x) . (2.8)

5Most of the formulae in this paper are valid in any even dimension; in a few obvious instances, however,

we specialize to two dimensions. Also, when necessary, we specialize to the case of a U(1) gauge group.
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The change of variables leads to a Jacobian:

∏

x

dΨxdΨ̄x =
1

J

∏

i

dc+
i dc−i dc̄+

i dc̄−i (2.9)

J = det||wi(x)uj(x)|| det||v†i (x)t†j(x)|| , (2.10)

(note that ||wi(x)uj(x)|| is a 2N2 × 2N2 dimensional matrix, with x indexing rows and

i, j-columns) and the partition function becomes:

ZV =

∫

∏

x

dΨxdΨ̄xe
S =

1

J

∫

∏

i

dc+
i dc−i dc̄+

i dc̄−i e
P

i,j c̄+i c+j (t†i ·D·wj)+c̄−i c−j (v†i ·D·uj)

=
1

J
det||(t†i · D · wj)|| det||(v†i · D · uj)|| . (2.11)

Under infinitesimal changes of the gauge field background:

Ux,µ → Ux,µ + δηx,µUx,µ , (2.12)

which, in the case of gauge transformations, take the form:

δωUx,µ

∣

∣

gauge
= i (ωxUx,µ − Ux,µωx+µ) ≡ −i (∇µωx) Ux,µ , (2.13)

the various factors in ZV change as described below.

(i) The change of the “positive chirality” determinant is:

δη ln det ||(t†i · D · wj)|| =
∑

j,k

(w†
j · D−1 · tk)(t†k · δηD · wj)

+(w†
j · D−1 · tk)(t†k · D · δηwj)

= tr(P̂+D−1δηD) +
∑

j

(w†
j · δηwj) .

To obtain (2.14), in the first line we used
∑

k(w
†
j ·D−1 ·tk)(t†k ·D·wi) = δji, while in the

second line we used the freedom to insert
∑

k vkv
†
k (which, using P̂+D−1 = D−1P−,

is killed by the projectors); finally, we used completeness,
∑

k tkt
†
k + vkv

†
k = 1. The

trace in (2.14) is over spinor as well as space-time indices.

We note that the first term in (2.14) reflects the change of the operator, D, while the

second is due to the change of basis vectors wi, which depend on the gauge background

(while the t, v-vectors do not). We stress that this factorization of the change of the

“positive chirality” determinant into separate terms, one due to the change of the

operators and the other due to the change of basis vectors, is a general feature of

chiral partition functions. This will be proven for partition functions defined with a

general chiral action in section 4.2, and will be important in what follows.
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(ii) For the “negative chirality” determinant, using
∑

k(u
†
j · D−1 · vk)(v

†
k · D · ui) = δji,

similar to the derivation of (2.14), we find:

δη ln det ||(v†i · D · uj)|| =
∑

j,k

(u†
j · D−1 · vk)(v

†
k · δηD · uj)

+(u†
j · D−1 · vk)(v

†
k · D · δηuj),

= tr(P̂−D−1δηD) +
∑

j

(u†
j · δηuj) .

Here, we also have a contribution from the change of operator, the first term in (2.14)

as well as a contribution due to the change of basis.

1. Finally, the change of Jacobian is computed from the change of its first factor:

δη ln det ||wi(x)uj(x)|| =
∑

x,y,i,j

∥

∥

w†
i (x)

u†
j(y)

∥

∥ × ||δηwi(x)δηuj(y)||

=
∑

i

(w†
i · δηwi) + (u†

i · δηui) , (2.14)

leading to:

1

J
→ 1

J
e
−

P

i

h

(w†
i ·δηwi)+(u†

i ·δηui)
i

. (2.15)

Now we can collect all factors, and find that in the vectorlike theory the factors

in (2.14), (2.14), (2.15) having to do with the choice of basis vectors cancel out from

the change of the partition function and we are left with:

ZV [U + δηU ] = ZV [U ]etr(P̂+D−1δηD)+tr(P̂−D−1δηD)

= ZV [U ]etrD−1δηD , (2.16)

showing that the change of the partition function is determined solely by the change of the

GW operator. In particular, for a gauge variation of U , eq. (2.13), we find immediately

from (2.16) that ZV [U + δωU ] = ZV [U ], and also that:

trP̂+D−1δωD = itr(P− − P̂+)ω = − i

2
trωγ̂5 = − i

2

∑

x

ωx tr(γ̂5)xx ,

trP̂−D−1δωD = itr(P+ − P̂−)ω =
i

2
trωγ̂5 =

i

2

∑

x

ωx tr(γ̂5)xx , (2.17)

where the trace in the last line is over spinor indices only. The field tr(γ̂5)xx appearing

in the basis-independent gauge variations (2.17), is known to be a topological lattice field,

which expresses the chiral anomaly on the lattice (this follows, e.g., from the index theorem

of [22], see also [13, 47, 23]). Naturally, eqs. (2.17) show that the anomalies due to the left-

and right-moving fermions cancel.

Since we will be interested in splitting vectorlike theories’ lattice partition functions

with more general actions into chiral components, and in the dependence of these chi-

ral components on the gauge field background, we will focus our discussion on the term
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∑

i(w
†
i · δηwi) (or similarly

∑

i u
†
i · δηui) in the following sections and pay great attention

to the variations of the basis vectors with respect to changes of the gauge background.

Following [13], we will refer to
∑

i(w
†
i · δηwi), and similar for wi → ui, as “measure terms”

since not only they depend on but also uniquely determine the fermion measure [23].

3. The “1-0” GW-Yukawa model and a paradox

The Yukawa-Higgs-GW-fermion model being considered here, which we call the “1-0”

model, is a U(1) two-dimensional lattice gauge theory with one charged Dirac fermion

ψ of charge 1 and a neutral spectator Dirac fermion χ.

Considering this theory is motivated by its simplicity: it is the minimal Higgs-Yukawa-

GW-fermion model in two dimensions which holds the promise to yield, at strong Yukawa

coupling, a chiral spectrum of charged fermions and is, at the same time, amenable to

numerical simulations not requiring the use of extensive computing resources. The fermion

part of the action of the “1-0” model is:

S = Slight + Smirror (3.1)

Slight =
(

ψ̄+ · D1 · ψ+

)

+ (χ̄− · D0 · χ−)

Smirror =
(

ψ̄− · D1 · ψ−

)

+ (χ̄+ · D0 · χ+)

+y
{(

ψ̄− · φ∗ · χ+

)

+(χ̄+ · φ · ψ−)+h
[(

ψT
− · φγ2 · χ+

)

−
(

χ̄+ · γ2 · φ∗ · ψ̄T
−

)]}

.

The chirality components for the charged and neutral fermions are defined, by projectors

including the appropriate Neuberger-Dirac operators (charged D1 and neutral D0) for the

unbarred components, i.e. ψ± = (1 ± γ̂5)ψ/2 . The field φx = eiηx , |ηx| ≤ π, is a unitary

higgs field of unit charge with the usual kinetic term:

Sκ =
κ

2

∑

x

∑

µ̂

[2 − ( φ∗
x Ux,x+µ̂ φx+µ̂ + h.c. )] . (3.2)

The inclusion of both Majorana and Dirac gauge invariant Yukawa terms is necessitated by

the requirement that all global symmetries not present in the desired target chiral gauge

theory be explicitly broken, see [42, 12]. Moreover, consistent with the symmetries, if the

Majorana coupling h vanishes, there are exact mirror-fermion zero modes for arbitrary

backgrounds φx, which can not be lifted in the disordered phase [41].

From now on, we will call the fermion fields that participate in the Yukawa interactions

the “mirror” fields — these are the negative chirality component, ψ−, of the charged ψ,

and the positive chirality component, χ+, of the neutral χ, while the fields ψ+ and χ− will

be termed “light.”

The lattice action (3.1) completely defines the theory via a path integral over the

charged and neutral fermion fields, the unitary higgs field, as well as the gauge fields. We

will not consider the integral over the lattice gauge fields, but will study in detail the

variation of the partition function with respect to the gauge background.

Our interest is in the symmetric phase of the unitary higgs theory (expected to occur

at κ < κc ≃ 1), where the higgs field acts — modulo correlations induced by κ 6= 0 and

– 11 –
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by fermion backreaction — essentially as a random variable. Based on experience with

strong-Yukawa expansions in theories with naive or Wilson fermions, it is expected that

in the large-y, fixed-h limit, there is a symmetric phase where the fermions ψ− and χ+

decouple from the long distance physics. In the symmetric phase, this decoupling occurs

without breaking the chiral symmetry, essentially by forming chiral-neutral composites of

the fermions with the scalar φ, as described around eq. (1.3) of section 1.2.

The expected spectrum of light fields in the target theory consists of the charged ψ+

and the neutral χ−. The spectrum of the mirror theory was investigated numerically in [41],

for vanishing gauge field background and in the infinite-y limit. The evidence found there

points towards decoupling of the mirror sector, with no breaking of the chiral symmetry

of the mirror sector (this symmetry is gauged by the U(1) gauge field). The analysis of

ref. [41] was performed by first using the analogue of the formulae from sections 2.1, 2.2, for

the case of vanishing gauge background. The eigenvectors of γ̂5 were explicitly worked out

and the splitting of the partition function into “light” and “mirror” was made manifest.

Subsequently, a Monte Carlo simulation of the mirror sector in the infinite-y limit was

performed, yielding the above-cited results about the decoupling of all mirror sector fields

(decoupling at infinite y further requires h > 1). However, a complete decoupling of the

mirror is subtle. As discussed in the Addendum, we suspect that light degrees of freedom

might still exist in a very contrived way, and further studies are required to clarify this

dynamical issue; needless to say, this is under current investigation.

As we showed in section 2.2, the lattice fermion action (3.1) and the corresponding

partition function easily split into light and mirror parts also in an arbitrary fixed gauge

background. Only the charged eigenvectors (of both light and mirror fields) depend on the

background. By analogy with (2.11) we have a split of the partition function:

Z[U ; y, h] = ZL[U ] × 1

J [U ]
× ZM [U ; y, h] . (3.3)

Here ZL[U ] = det ||(t†i ·D ·wj)||×(determinant of neutral light spectator) is the light sector

partition function. The jacobian J is the product of the jacobians (2.9) for the charged and

neutral sectors. Finally, ZM denotes the mirror partition function — an integral over the

charged mirrors, neutral mirrors, and unitary higgs field. The mirror fermion integral is a

determinant which includes a kinetic term, as in (2.11), but now also the Yukawa terms

from (3.1), and is also averaged over the random φx (we take κ → 0).

Now, because the l.h.s. of (3.3) is manifestly gauge invariant, so is the r.h.s., since it

is obtained from the l.h.s. simply via a change of variables. But we know how two of the

factors on the r.h.s. transform under gauge transformations: the light partition function

ZL[U ] and the Jacobian 1/J [U ], for which we have, from (2.14), using (2.17):

ZL[Uω]

J [Uω]
≃ ZL[U ]

J [U ]
exp

(

− i

2
trωγ̂5 −

∑

i

(u†
i · δωui)

)

. (3.4)

Therefore, from (3.3) and the fact that the l.h.s. is gauge invariant, it follows that the
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mirror partition function transforms, under gauge transformations, as follows:

ZM [Uω; y, h] ≃ ZM [U ; y, h] exp

(

i

2
trωγ̂5 +

∑

i

(u†
i · δωui)

)

, (3.5)

independent not only on the values of the Yukawa couplings (y, h) but also most of the

details of the mirror action; we note that our more general considerations of section 4.2 give

a direct proof of this result. In passing, we stress that we can not similarly infer the change

of ZM [U ; y, h] under arbitrary (i.e., not gauge transformations) changes of background,

since we expect that the change of Z[U ; y, h] on the l.h.s. of (3.3) under arbitrary variations

of U depends on y, h.

The gauge variation of the mirror partition function of eq. (3.5) leads us to a para-

dox.6 The exact result (3.5) shows that the gauge transformation of the mirror partition

function should precisely cancel that of the light chiral fermion. If the mirror sector only

involves heavy degrees of freedom, as the numerical results of [41] suggest, and if these zero-

background results persist for arbitrarily small gauge backgrounds (as one is inclined to

expect), then the mirror partition function should be a local functional of the gauge back-

ground. By (3.5), this local functional’s gauge variation must precisely cancel the anomaly

of the light chiral fermion. However, this is known to be impossible, as the anomaly is not

the variation of a local functional.

In what follows we will argue that this paradox has a natural resolution in the case

when dynamical gauge fields are turned on, which can be found using the results of [6]

and [13]. We will show that the paradox is (naturally) absent if the anomalies in the light

and mirror sectors cancel separately. Moreover, we will argue, in section 5, that the mirror

partition function and, more generally, the generating functional for connected correlation

functions in the mirror sector, are smooth functions of the gauge field background in the

anomaly-free-mirror case only.

4. More on the choice of basis vectors

To explain the resolution mentioned above and the other results alluded to in the last

paragraph (to be discussed in section 5), we need to first consider in more detail the

variations of the chiral basis vectors under arbitrary changes of the gauge background

and the properties of the resulting fermion measure. This is important, since, as we saw

in section 2.2 and will show for more general chiral partition functions in section 4.2,

the “measure terms” determine the basis-vector-dependent part of the chiral partition

functions’ variation with the gauge background. They reflect the ambiguity in the phase

choice of the chiral partition functions. Interestingly, the “curvature”, associated to this

term thought of as a connection, is basis independent. Therefore the “measure term” can

not be chosen at random. In particular, in the anomalous case (section 4.3) we recall why

there is no definition of the “measure terms” which is a smooth function of the gauge field

6We thank N. Arkani-Hamed, M. Golterman, B. Holdom, and Y. Shamir for asking pertinent questions

about the anomaly.
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background. We also explicitly show the singularity of the basis vectors and the associated

“measure terms” that were chosen in our analysis of the 1-0 model. In the anomaly-free

case (section 4.3.1) we show how to construct a smooth measure in the Wilson-line subspace

of gauge field space by cancelling the singularities in the measure precisely with the help

of the phase ambiguity.

4.1 Change of basis vectors under arbitrary change of background

The change of chiral partition function under arbitrary changes of the gauge background

is of great interest. By eqs. (2.14), (2.14) and also section 4.2, this clearly depends on the

change of basis vectors. Hence, we begin this section by studying how the γ̂5 eigenvectors

change under changes of the gauge background.

In a U(1) gauge theory, a gauge (2.13) and an arbitrary (2.12) change of background

differ in the choice of the function η in (2.12):

δηx,µUx,µ ≡ ηx,µUx,µ (4.1)

where for gauge variations we have ηx,µ = −i∇µωx. The γ̂5 matrix changes as follows:

γ̂5[U + δηU ] = γ̂5[U ] − γ5δηD , (4.2)

where the second term follows from γ̂5 = γ5(1 − D). The variation δηD obeys:

γ̂5(γ5δηD) = −(γ5δηD)γ̂5 , (4.3)

as a consequence of the GW relation (i.e., γ̂2
5 = 1).

Now given the set of eigenvectors ui, wi of γ̂5[U ], obeying orthonormality (w†
i · wj) =

(u†
i · uj) = δij and (u†

i · wj) = 0, we wish to find the eigenvectors of γ̂5[U + δηU ] of (4.2):

(γ̂5 − γ5δηD) w′
i = w′

i

(γ̂5 − γ5δηD) u′
i = −u′

i . (4.4)

We assume that in the neighborhood of the chosen initial background U the vectors change

smoothly under small changes of the gauge background. We thus look for w′
i and u′

i as

expansions in terms of the old vectors ui, wi:

w′
i = wi + δηwi , δηwi = iαij wj + βij uj ,

u′
i = ui + δηui , δηui = iγij uj + κij wj , (4.5)

where α, β, κ, γ are assummed linear in η. Substituting (4.5) into the orthonormality re-

lations for the primed vectors, we immediately see that they require that α and γ be

hermitean matrices, while β† = −κ. We now plug (4.5) into (4.4), keeping terms to lead-

ing order in δη , to find the equations determining the change of the vectors (a sum over

repeated indices is assumed):

(1 − γ̂5) δηwi = −(γ5δηD) wi ↔ 2βijuj = −(γ5δηD)wi

(1 + γ̂5) δηui = (γ5δηD) ui ↔ 2κijwj = (γ5δηD)ui , (4.6)
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showing that the hermitean matrices α and γ are completely arbitrary, while β and κ are

completely determined by δηD. Finally, for the change of the basis vectors with a change of

gauge background, δηwi and δηui (it is easy to check that β† = −κ for the explicit solution

below), we find:

δηwi = iαijwj −
1

2
uj(u

†
j · γ5δηD · wi) ,

δηui = iγijuj +
1

2
wj(w

†
j · γ5δηD · ui) . (4.7)

Eqs. (4.7) show that the change of the basis vectors with definite chirality in the direc-

tion orthogonal to the same chirality subspace is completely determined by the change

of the gauge background and that the arbitrariness is in the freedom to make an unitary

transformation in the given chirality subspace.

It is also clear from (4.7) that the change of the basis vectors contributing to the

change of measure and Jacobian, as in (2.9), can be written, by, e.g., changing the gauge

background at a single link only and using linearity of α, γ in η, as follows:

∑

i

(w†
i · δηwi) = iαii ≡ −

∑

x,µ

ηx,µ jw
µ,x[U ] ,

∑

i

(u†
i · δηui) = iγii ≡ −

∑

x,µ

ηx,µ ju
µ,x[U ] . (4.8)

The “currents” appearing in (4.8) are, generally, functionals of the gauge background as we

have indicated above; the left- and right-handed currents ju and jw can be different. We

stress that the measure terms (4.8) are purely imaginary — it is precisely the U -dependence

of the phase of the chiral partition functions that is left ambiguous.

While the perturbative equations (4.4), (4.5) do not determine the currents (4.8),

there are important restrictions imposed on them by global considerations [6]. These arise

upon considering the second variation of the “measure” terms (4.8), δζ

∑

i(w
†
i δηwi) =

∑

i(δζw
†
i · δηwi) + (w†

i · δζδηwi), in particular the “curvature”:7

fw
ζη ≡

∑

i

(δζw
†
i · δηwi) − (δηw

†
i · δζwi) , (4.9)

which can be calculated upon substituting eqs. (4.7) for the variations δηwi, δζwi into (4.9).

One notices that fw
ζη is independent on the undetermined matrices αij and only depends

on the variation of the basis vectors in the orthogonal subspace:

fw
ζη =

1

4

∑

i,j

(

(w†
i · γ5δζD · uj)(u

†
j · γ5δηD · wi) − (ζ ↔ η)

)

=
1

4
Tr

(

P̂+ [γ5δζD, γ5δηD]
)

= Tr
(

P̂+

[

δζ P̂−, δηP̂−

])

, (4.10)

7That fw
ζη is indeed the sum of Berry curvatures for the positive “energy” eigenstates wi of the “Hamil-

tonian” γ̂5 depending on the parameters [U ] is explained in [6].
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where we used the relations between eigenvectors and projectors of section 2.1. A similar

relation is obtained for the negative chirality curvature:

fu
ζη = Tr

(

P̂−

[

δζ P̂+, δηP̂+

])

, (4.11)

obeying, of course, fu
ζη + fw

ζη = 0. The relations (4.10), (4.11) show that the curvatures

of the measure terms (4.8) are basis independent and imply that if the curvatures are

nonvanishing, the the currents jw
µ [U ], ju

µ [U ]—depending on the choice of phases (4.7) of

the γ̂5 eigenvectors wi, ui—can not be chosen to be independent on the background (in

particular, they can not be taken to vanish).

Most importantly, eqs. (4.10), (4.11) also imply that if perturbative anomalies do not

separately cancel among the light and mirror fermions, the measure terms
∑

i(w
†
i · δηwi)

can not be chosen to be smooth functions of the gauge field background (see section 4.3

and [6, 13]). This is because the curvature defined above integrates, over some closed

sub-manifolds in the gauge field configuration space, to quantized non-zero values.

The “measure” terms determine the variations of the chiral partition functions under

changes of the gauge background — as we saw in the example of the vectorlike theory with

the usual kinetic action, see (2.11), (2.14), (2.14), (2.15). We will prove this for more general

chiral partition functions in section 4.2. The singular nature of the measure implies that

the separation of the partition function into chiral “light” and “mirror” components can

not be a smooth function of the gauge background if the light and mirror anomalies do not

separately cancel and that the separation of the partition function is ill-defined. The explicit

manifestation of the singularity in the 1-0 model will be considered in sections 4.3, 4.3.1.

4.2 On the variations of chiral partition functions

Before considering anomaly cancellation and the smoothness of the measure, in this sec-

tion, we prove an important property on the variation of chiral partition functions. It

is a fairly straightforward proof but is also very general. We find it quite useful, and in

particular, section 5 contains an example of how such a general proof can lead to some

strong conclusions.

Suppose S[Xa
x , Y †b

x , Oc
xy] is an arbitrary action. Here Xa

x and Y †b
x are some d-

dimensional (“fundamental” and “anti-fundamental”) vectors, a and b are “flavor” indices,

and x = 1, 2, . . . , d labels both spatial and spinor indices. Oc are some additional operators

the theory depends on, which we assume to be some d × d matrices. The action is said

to be “chiral” in the following sense. For each flavor Xa and Y †b, there exist projection

operators P̂ a and P b respectively, all satisfying P 2 = P , such that:

S[Xa
x , Y †b

x , Oc
xy] = S[P̂ a

xyX
a
y , Y †b

y P b
yx, Oc

xy]. (4.12)

A summation over all repeated lattice and spinor indices (x, y, z) is understood, here and

further in this section. Given any action S̃[X,Y †, O] and some projection operators P̂ and

P , one can always “build” a chiral action by just defining S[X,Y †, O] = S̃[P̂X, Y †P,O].

The following property of a “chiral” action is essential for our discussions here. Given any
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vector ux such that P̂ a
xyuy = 0, one has:

δS

δXa
x

ux =
δS

δ(P̂ a
zyX

a
y )

P̂ a
zxux = 0, (4.13)

where equation (4.12) is used in the second step. A similar property holds true for δS/δY †b
x

as well.

We now proceed to explicitly construct the chiral partition functions by choosing two

sets of orthonormal basis wi and tj such that:

P̂wi = wi, P tj = tj (4.14)

w†
i wj = δij , t†i tj = δij . (4.15)

Using chirality, we then set X =
∑

i ciwi, Y † =
∑

i c̄it
†
i and define the partition function,

specializing without loss of generality to the case of one flavor:

Z[U ] =

∫

∏

i

dci

∏

j

d̄cj e
S

"

P

i

ciwi,
P

j

c̄jt
†
j , O

#

. (4.16)

We also note that no assumptions about the locality, (bi-)linearity, etc., of S are made here;

in particular, S may be an effective action for the chiral fermions X and Y obtained after

integration over some other degrees of freedom; its chirality (4.12) is the only important

property for what follows. For example, S could be the mirror-fermion effective action

obtained after integrating over the random (κ → 0) unitary higgs field in the “1-0” model

with mirror action given in (3.1), (3.2).

We now imagine that the projectors P̂ as well as the operator(s) O depend on some

external fields U , inducing external field dependence of Z[U ] as indicated in (4.16); here

we will assume that the projector P can also depend on U , although in our application

this will not be the case. We wish to compute the variation of Z[U ] under changes of the

background field:

wi → wi + δwi, ti → ti + δti, (4.17)

and

O → O + δO . (4.18)

The variation of S is given by:

δS =
δS

δXx

∑

i

ci δwix +
∑

j

c̄j δt†ix
δS

δY †
x

+
δS

δO
δO . (4.19)

The variation of the partition function is, therefore:

δZ[U ] =

∫

∏

i

dci

∏

j

dc̄j eS δS (4.20)

= Z[U ] ·





∑

i

〈

δS

δXx
ci

〉

δwix +
∑

j

δt†jx

〈

c̄j
δS

δY †
x

〉

+

〈

δS

δO
δO

〉



 .
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Here and below, “< >” denotes expectation values.

Now, the following identity of an arbitrary grassmann integral is easily verified

∫

∏

i

dci
δF (c1, c2, . . . )

δck
cl = δkl

∫

∏

i

dci F (c1, c2, . . . ). (4.21)

Here F is an arbitrary function of multiple grassmann numbers. We are being very casual

with the ordering of grassmann numbers — this identity holds only if the ordering of the

grassmann numbers are defined such that it’s unchanged before and after the variation on

F . We will implicitly assume this rule in the following calculations.

It is amusing that
〈

δS
δXx

ci

〉

and
〈

c̄j
δS
δYx

〉

can be computed without knowing the actual

form of S at all, essentially as a direct consequence of identity (4.21) and the chirality of

the action. We claim that:
〈

δS

δXx
ci

〉

= w†
ix and

〈

c̄j
δS

δYx

〉

= tjx. (4.22)

To prove (4.22), one only needs to verify the inner products as:

〈

δS

δXx
ci

〉

wjx =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ci wjx

=
1

Z

∫

∏

k

dck

∏

l

dc̄l
δeS

δcj
ci = δij (4.23)

with the help of identity (4.21) in the last step. For any other vector ux that is perpendicular

to all the wi’s one has:

〈

δS

δXx
ci

〉

ux =
1

Z

∫

∏

k

dck

∏

l

dc̄l eS δS

δXx
ux ci = 0 (4.24)

simply because δS
δXx

ux = 0, following from chirality of the action, eq. (4.13). Similar prop-

erties are easily verified for
〈

c̄i
δS

δY
†
x

〉

. Since the eigenvectors of P̂ and the ones orthogonal

to them form a complete set, these conditions are enough to conclude that equation (4.22)

holds true.

Therefore the variation (4.20) of the partition function (4.16) becomes, using (4.22):

δ log Z[U ] =
∑

i

(w†
i · δwi) +

∑

i

(δt†i · ti) +

〈

δS

δO
δO

〉

. (4.25)

We thus showed that the factorization property of the variations of chiral actions alluded

to after eq. (2.14) is general — the variation of a chiral partition function always factorizes

into a variation of the basis vectors plus a variation of the operators.

In the particular case when δti = 0, P = (1 − γ5)/2, P̂ = (1 + γ̂5)/2, and Z[U ] is the

partition function of, say, the positive chirality fermion — defined by keeping the c+, c̄+

integral in (2.11) only and equal to det (t†i ·D ·wj)—it is clear that its variation, eq. (2.14),

is reproduced by (4.25).
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This theorem is also useful for determining how the chiral partition function transforms

under any symmetry the original action S[X,Y †, O] happens to possess. For example,

suppose the action respects the gauge symmetry, namely:

0 = δωS =
δS

δX
δωX + δωY † δS

δY †
+

δS

δO
δωO, (4.26)

where:

δωX = iωX, δωY = iωY, and δωO = i[ω, O ] , (4.27)

is the usual gauge transformation on the lattice. Choosing P = (1 + γ5)/2 and P̂ =

(1 − γ̂5)/2 and switching the notation w → u and t → v for consistency, equations (4.25)

together with (4.26) immediately imply that under this transformation:

δω log Z =
∑

i

(u†
i · (δωui − iωui)) + i

∑

i

(v† · ω v)

=
∑

i

(u†
i · δωui) − iTr ω(P̂ − P ) =

∑

i

(u†
i · δωui) +

i

2
Tr ωγ̂5

(4.28)

in agreement with equation (3.5). This procedure applies to more general situations. We

will make further use of eq. (4.25) in the following sections.

4.3 Anomaly cancellation and smoothness: the Wilson line background

We now return to the issue of anomaly cancellation and the smoothness of the light-mirror

split of the partition function. It is well known that the existence of gauge anomaly in chiral

theories is deeply connected to the topology of the gauge field configuration space (for a

discussion in the continuum, see [43], while for lattice overlap work, see [6, 23, 44]). On the

2-d square lattice with U(1) gauge group, in a given topological (flux) sector of admissible

fields, this space is a N2+2 dimensional torus times a contractible space [13] and the gauge

anomaly prevents one from defining a smooth fermion measure in the path-integral over

this space. The general properties of the gauge anomaly are discussed in [13, 23], where it

is proven that so long as the anomaly cancellation condition is satisfied a smooth measure

exists.

In this section, following [6], we focus on two dimensional chiral theories with only

homogeneous Wilson lines turned on, excluding all other gauge field configurations (in

sufficiently small volume, the Wilson lines give the leading contribution to the gauge path

integral). The use of such a simplified background is that it allows us to explicitly construct

the fermion measure and literally see where the singularities appear and how anomaly

cancellation removes the difficulty.

The two-dimensional theory is defined on a N × N lattice. All the fields are endowed

with periodic boundary conditions. The gauge field configuration space in this sub-theory

is completely tractable. We take the Wilson lines, denoted as h = (h1, h2), to be valued

in the range [0 , 2π). Physical quantities depending on them must be periodic functions

with period 2π. This is the remnant of the general gauge symmetry in this sub-theory. As

a result, the variable h is valued on a two-torus defined by identifying the opposite sides
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of the square [0 , 2π] × [0 , 2π]. We shall refer to this torus as the h-torus, or T 2
h in the

following.

We would like to demonstrate how anomaly cancellation leads to a smooth measure

in such a simplified example. First, we recall some known results of importance. Consider

the theory defined by a chiral action S[X,Y †, O] that satisfies the chirality property (4.12).

We assume that only the “∧-ed” projectors depend on the Wilson lines. As is generally

true in chiral theories on the lattice, the partition function is only defined with sets of basis

vectors chosen for each projection operator. Suppose they are chosen as:

P̂−(h)ui(h) = ui(h), P+vi = vi , (4.29)

P̂+(h)wi(h) = wi(h), P+ti = ti , (4.30)

and define the partition function as usual:

Z(h) =

∫

∏

i

dc−i dc̄+
i · exp



S





∑

i

c−i ui,
∑

j

c̄+
j v†j , O







 . (4.31)

As we know, Z(h) defined in such a way depends on the choice of the basis. In particular if

we had chosen u′
i = U(h)ijuj, where U is some h dependent unitary matrix, the partition

function defined with the new basis defers from the old one by a pure phase det U(h).

As explained in section 4.2, given any chosen basis, the variation of the chiral partition

function (4.25) consists of two terms:

δ log Z =
∑

i

(u†
i · δui) +

1

Z

∫

∏

i

dc−i dc̄+
i eS δS

δO
δO, (4.32)

where only the first term, referred to as the “measure term,” depends on the basis choice

and it uniquely determines the fermion measure [23]. In what follows we denote it by:

Jµ =
∑

i

(u†
i · ∂µui), (4.33)

where ∂µ ≡ ∂
∂hµ

. We will also refer to it as the “connection” [6] because the “curvature”

associated to it defined as fµν = ∂µJν − ∂νJµ plays an important role in our discussion

here. As we have derived in section 4.1, see eqs. (4.9), (4.10), the curvature is given by:

fµν =
∑

i

(∂µu†
i · ∂νui) − (∂νu

†
i · ∂µui) = Tr

(

P̂−[ ∂µP̂− , ∂ν P̂− ]
)

, (4.34)

and is independent on the basis choice. Furthermore, its integral over the entire T 2
h is

not difficult to compute [6]. In the case of a single charge-1 chiral fermion with projector

P̂− = 1−γ̂5

2 (as will be further discussed below in section 4.3.1) the integral of the curvature

over the h-torus turns out to be:
∫

T 2
h

fµν = −2πi . (4.35)
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Eq. (4.35) immediately implies that there does not exist an everywhere smooth “connec-

tion” Jµ defined on the h-torus since ∂T 2
h = ∅. Given any chosen basis of ui’s, Jµ must

always be singular at least at some isolated points on T 2
h . More generally, with multi-

ple charged fermions, each fermion flavor of charge q contributes to the curvature a term

±q2fµν(qh), where the sign depends on the chirality. Even if the anomaly free condi-

tion is satisfied, namely
∑

q2
+ =

∑

q2
−, the total curvature fTOT

µν =
∑

q−
q2
−fµν(q−h) −

∑

q+
q2
+fµν(q+h) does not vanish since each term in the summation varies with h differ-

ently. Its integral over T 2
h , however, does vanish:

∫

T 2
h

∑

q±

f q±
µν = 2πi

(

∑

q2
+ −

∑

q2
−

)

= 0. (4.36)

It then allows for a smooth “connection:”

Jµ =
∑

i,q−

(u
† q−
i · ∂µu

q−
i ) +

∑

i,q+

(w
† q+

i · ∂µw
q+

i ), (4.37)

to be defined on T 2
h . Recall that the measure term is the basis-dependent variation of

the chiral partition function. Hence, if the measure term can be chosen to be smooth, a

smooth fermion measure exists, at least in this subspace of the gauge field space; see [13]

for a general proof of the existence of smooth measure in anomaly-free U(1) lattice gauge

theories and [23] for arguments in the nonabelian case.

4.3.1 Defining the measure of the anomaly free chiral partition function

We will demonstrate how such a smooth measure can be found in the anomaly free theories

by first choosing an explicit set of basis vectors.

Notice that the Wilson lines are a homogeneous background and the theory has a

translational symmetry, hence it is convenient to work with the momentum eigenstates.

On the lattice of size N × N , momenta are discretized in units of π
N

. With the Wilson

lines turned on, the momenta effectively become continuous. The Wilson line background

shifts the values of momenta in physical observables that depend on them by an amount

of h
2N

, as we will see in the following. With h1,2 defined to take their values in [0 , 2π), this

shift exactly “fills in” the gaps between the discrete momenta. Therefore, momenta shifted

by the Wilson lines live on 2-torus defined by identifying the opposite sides of the square

[0 , π] × [0 , π]. We will refer to this torus (the Brillouin zone) as the momentum-torus, or

T 2
k .

To proceed with the explicit construction and choose a basis, we first define the fol-

lowing functions:

a(p) = 1 − 1 − 2s2
1 − 2s2

2
√

1 + 8s2
1s

2
2

, b(p) =
2s2c2

√

1 + 8s2
1s

2
2

, c(p) =
2s1c1

√

1 + 8s2
1s

2
2

, (4.38)

where s1,2 ≡ sin p1,2 and c1,2 ≡ cos p1,2. The “momenta” p = (p1, p2) ∈ T 2
k live on the

momentum-torus. The functions a(p), b(p) and c(p) just defined are periodic functions of

period π and therefore smooth and well-defined everywhere on T 2
k . In momentum space,
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the two-dimensional Neuberger-Dirac operator D = 1 − γ5γ̂5, see (2.1), with γ5 = σ3, has

the form:

D(p) =

(

ap

−icp + bp

−icp − bp
ap

)

, (4.39)

and the GW relation γ̂2
5 = 1 is equivalent to a2

p + b2
p + c2

p = 2ap.

Let us first focus on the case of a single fermion of charge 1. A particularly simple

choice of the basis vectors is given below [41]. For P̂− eigenvectors, we choose:

uk,h =
1√
2N

ei2k·x









√

a(k + h
2N

)

i
√

2 − a(k + h
2N

) e
iϕ

k+ h
2N









, (4.40)

and for P̂+:

wk,h =
1√
2N

ei2k·x









i
√

2 − a(k + h
2N

)

√

a(k + h
2N

) e
iϕ

k+ h
2N









. (4.41)

Here we defined the phase factor:

eiϕp ≡ ibp + cp
√

b2
p + c2

p

, (4.42)

and the momenta:

k =
(nπ

N
,

mπ

N

)

, n,m = 0, 1, . . . , N − 1. (4.43)

For the projectors P± that are independent of the Wilson lines we simply choose:

v†
k,h =

1

N
e−i2k·x( 1 0 ), t†

k,h =
1

N
e−i2k·x( 0 1 ) . (4.44)

In the chiral theory defined by an action S[X,Y †, O] = S[P̂−X,Y †P+, O], only

u’s (4.40) and v’s (4.44) will be involved. Besides the “wave-function” ei2k·x (which can

be varied by a gauge transformation), everything just defined indeed depends only on the

combination p = k+ h
2N

. We find the following picture sometimes helpful. One can imagine

that the discretized momenta k sit on the sites of a N ×N square lattice on the momentum

torus T 2
k . The effect of the Wilson line h is to shift this lattice around T 2

k . When h goes

one cycle around T 2
h , this lattice is shifted exactly by one unit cell and overlaps with the

original.

Notice that the function eiϕp of (4.42) is ill-defined8 at p = k+h/(2N) = (0, 0), (π
2 , π

2 ),

(0, π
2 ), and (π

2 , 0). Given that k is discretized (4.43), these points are only (for unit values

8The zero gauge background vectors used to split the partition function in [41] have a discontinuity at

these values of momenta.
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of the charge) reached by certain modes of k when h = (0, 0) mod 2π. As a consequence,

the “connection:”

Jµ(h) =
∑

k

(u†
k,h · ∂µuk,h) =

i

2

∑

k

(

2 − a

(

k +
h

2N

))

∂µϕ
k+ h

2N

, (4.45)

as a vector field defined on T 2
h , can be singular only at h = (0, 0) and is perfectly smooth

everywhere else. The singularity at h = (0, 0) is expected since we already know from (4.35)

as well as [6], that the “curvature” associated to “connection” Jµ integrates over the

entire torus to 2πi. (The curvature fµν and its integral can also be explicitly computed

from (4.45), using (4.42), (4.38).) Imagine on T 2
h we draw a small circular disc D of radius

r centered at h = (0, 0); then, by Stoke’s theorem:

∫

∂D

Jµ = −
∫

T 2
h
−D

fµν . (4.46)

Since fµν is smooth and finite everywhere on T 2
h , in the limit r → 0,

lim
r→0

∫

∂D

Jµ = −
∫

T 2
h

fµν = 2πi. (4.47)

Together with symmetry considerations, we are led to the conclusion that Jµ diverges as:

Jµ(h → 0) ≈ 1

r
θ̂µ. (4.48)

Here r =
√

h2
1 + h2

2 and θ̂µ denotes the unit vector tangential to ∂D. Exactly this 1
r
-

singularity is what prevents us from defining the measure smoothly. If we think of Jµ

as a vector field defined on T 2
h , this singularity appears as a divergent vortex around the

singular point. As explained above, this is the only singularity of Jµ, and if removed, Jµ

is smooth.

Let us generalize these results to fermions of charge q in a simple manner. Just replace

all the h’s in the expressions for uk,h and wk,h by qh. The “measure term” is modified to:

J q
µ (h) =

∑

k

(u†
k,qh · ∂µuk,q·h) = q J 1

µ (qh). (4.49)

Near every singular point of J q
µ , the properties just discussed above continue to hold. For

example, near the point h = (0, 0), where the measure term J q
µ diverges for any value of

q, we have:

J q
µ (h → 0) = qJ 1

µ (qh → 0) ≈ q · 1

qr
θ̂ =

1

r
θ̂. (4.50)

Hence, its line integral around the singularity is still 2πi. However, as J q
µ depends on h

through qh, by the periodic properties of J 1
µ , the number of locations where J q

µ diverges

increases to q2. Indeed, instead of having singularity only at h = (0, 0), the same type of

singularity must repeat itself at every point where h = (2nπ
q

, 2mπ
q

), n,m = 0, 1, . . . , q − 1,

exactly the right amount to account for the integral of f q
µν over T 2

h that scales as q2.

Figure 1 illustrates the 16 singularities of J 4
µ on T 2

h given by a chiral fermion of charge-4.
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Figure 1: First panel: the 16 singularities of J 4

µ
, each vortex has a divergence at the center.

Second: one vortex is slightly shifted. Third: one vortex is moved all the way to h = (0, 0) so that

two singularities coincide there; Fourth: all the vortices are shifted to the corner (the strength of the

singularity in the fourth panel is scaled to that of a single vortex). Axes (x, y) = (h1/2π, h2/2π).

Each vortex indicates a 1
r
-type divergence at its center. The four corners and the two

opposite sides are to be identified.

Evidently, the singularities we just discovered are the manifestation of the topological

obstruction that prevents one from defining a smooth measure for the anomalous chiral

theory [6, 13]. We now focus on the anomaly free case, namely when
∑

q2
+ =

∑

q2
− is

satisfied. Obviously fermions with opposite chirality produce vortices with opposite signs,

and if they sit on top of each other, they cancel. The anomaly-free condition guarantees

that there are always equal number of + and − vortices, giving a nice understanding of the

fact that the integral of f total
µν over the T 2

h vanishes. For the purpose of defining a smooth

measure though, this is not sufficient, since normally + and − vortices do not just sit on

top of each other. With the current choice of basis, the singularities produced by each
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charge-q chiral fermion are distributed on T 2
h with equal separations in both directions.

This regularity is very helpful for the counting, but not for the smoothness of the measure.

In the “345” model for an example, only the vortices at h = (0, 0) overlap and all the rest

miss each other. As the consequence, Jµ = J 3
µ + J 4

µ − J 5
µ diverges at many places.

To find a smooth measure term Jµ, one only needs to utilize the freedom of basis choice.

With the translational symmetry of the Wilson line background to be respected, we are

left with only the option to multiply the vectors by some h dependent phases. This turns

out to be sufficient. If we choose to replace the basis vectors (4.40) uk,qh → uk,qheiσk,qh ,

the new measure reads:

Jµ → Jµ + i
∑

k,q

∂µσk,qh. (4.51)

The additional term ∂µ (
∑

σ) is a total derivative of some function defined on the h-torus.

If it has no singularities of its own, it certainly does nothing interesting. If it has the same

vortex-type singularities as those found in the measure, positive and negative vortices must

appear in pairs, because the curl of ∂µσ vanishes. Therefore, one can imagine designing

such a σq, so that ∂µσq has at least a pair of + and − divergent vortices and one of the them

coincides with one of the singularities of J q
µ but with an opposite sign. This will cancel

that particular singularity of J q
µ at the position where it was, but will create it elsewhere.

The net effect is that singularities can be moved at will through such a manipulation. The

second panel of figure 1 demonstrates a particular choice of σ that slightly shifts one of the

singularities emerging in J 4
µ .

We can now envision how a smooth measure can be defined in the anomaly-free case.

Simply design the function σq such that all the singularities of J q
µ are shifted to a common

place so that they can be cancelled by the singularities of appropriate opposite-chirality

fermions. A simple way of doing so is to move every vortex toward h = (0, 0). During the

procedure, one might wish to preserve the lattice rotational symmetry. Such a constraint

can be obeyed by moving the singularities in a Z4 symmetrical way, as pictorially illustrated

by figure 2 for moving the singularities of J 3
µ and J 2

µ respectively.

An explicit expression for σ that realizes the manipulations illustrated in figure 2 can

be constructed by first defining T (x) = tan
(

x−π
2

)

, and for the charge-2 term J 2
µ as an

example, choose σ to be (eiσ is to be applied on only one of the basis vectors uk,qh):

σ(h1, h2) =
1

4

[

tan−1 T (h2)

T (h1 − π) − T (h1)
− tan−1 T (2π − h2)

T (h1 − π) − T (h1)
(4.52)

− tan−1 T (h2)

T (π − h1) − T (2π − h1)
+ tan−1 T (2π − h2)

T (π − h1) − T (2π − h1)

]

+
1

4

[

− tan−1 T (h1)

T (h2 − π) − T (h2)
+ tan−1 T (h1)

T (π − h2) − T (2π − h2)

+ tan−1 T (2π − h1)

T (h2 − π) − T (h2)
− tan−1 T (2π − h1)

T (π − h2) − T (2π − h2)

]

−1

2
tan−1 T (h2)

T (h1)
+

1

2
tan−1 T (h1)

T (h2)
.
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Figure 2: A pictorial illustration for moving the singularities of J 3

µ
and J 2

µ
respectively. Each

circle represents a divergent vortex and the arrows denote how they should be shifted. The second

panel represents the operation described by eq. (4.52).

As long as all the 1
r
-type singularities are cancelled, the new measure Jµ + i∂µ (

∑

σ) is

smooth everywhere.

5. Resolution of the paradox and smoothness of the mirror partition func-

tion in anomaly-free case

The resolution of the paradox of section 3 should be evident by now. The basis vectors

used to split the light and mirror partition functions in the “1-0” model have a disconti-

nuity at the four special points in momentum space (see footnote before eq. (4.45)). This

discontinuity of the basis vectors causes them and the measure to be singular already when

only the Wilson line sector of gauge field space is considered (at hµ = 0). This singularity

can not be removed by redefining their phases and is related to the nonvanishing chiral

anomaly in the mirror and light sectors. Thus, while the results of [41] hold at U = 1, the

mirror partition function, generating functional, and spectrum are not smooth functions of

the gauge background, and the trivial background results can not be used to infer anything

about the spectrum when gauge background fluctuations are included.

More interestingly than resolving the paradox, however, our results from section 4.2,

combined with those of ref. [13] (proving that the smooth measure exists iff the anomalies

cancel) imply that the mirror generating functional of a Yukawa-Higgs-GW model will

be a smooth function of the gauge background whenever the mirror and light sectors are

separately anomaly free (the proof below holds in finite volume). Most generally, we wish

to prove that, given the “measure term”:

Jµ =
∑

i

(u†
i · δµui) , (5.1)

is smooth (here δµ indicates variations in all possible directions in gauge field configuration

space) the partition function defined by

Z =

∫

dc̄ dc S̃[ciui, c̄iv
†
i , O] (5.2)
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is always smooth so long as the operator(s) O are smooth functions of the gauge field and

S̃ is a smooth functional of the operators. We assume that ui form an orthonormal basis

of the +1-eigenspace of the operator P̂−, and that S̃ satisfies the usual chiral property:

S̃[X,Y †, O] = S[P̂−X,Y †, O] (we ignored the “chiral property” regarding the Y -fields here

as those are assumed to be gauge field independent). Instead of eS , we wrote S̃ to avoid

dealing with possible logarithms in the proof which might cause unnecessary doubts. We

have in mind that S̃ is, for example, given by the mirror fermion action averaged over the

random unitary Higgs field(s) φ, the result of such averaging is a sum of multi-fermion

terms, which are polynomials in terms of ciui, and c̄iv
†
i .

We say that Z is a “chiral partition function” in the general sense if it is defined by

equation (5.2) with some S̃ that satisfies all the properties mentioned. We remind the

reader that although the vectors ui might be ill-defined at certain isolated points in the

gauge field configuration space, they never diverge — they can not simply because they

are unit vectors (see section 4.3.1 for example where we constructed the smooth measure

Jµ using them in the Wilson-line subspace with anomaly free contents). As a consequence,

any “chiral partition function”, being a grassmann integral defined with a smooth S̃, is

always a finite function of the gauge field, even when evaluated infinitely close to the points

where the basis vectors are ill-defined. More precisely stated, within any compact region

in the gauge configuration space, the absolute value of any “chiral partition function” is

bounded from above (with a fixed lattice size). We will loosely use the word “finite” in the

following to describe this property.

The proof for the smoothness of Z is then really simple. One only needs to first notice

that the variation of the action due to the variation of the operator O:

S̃′[X,Y,O] ≡ δS̃[X,Y,O]

δO
δO , (5.3)

is usually no longer chiral. However, if one defines:

S̃(1)[X,Y,O] ≡ S̃′[P̂−X,Y,O] =
δS̃[X ′, Y,O]

δO
δO

∣

∣

∣

∣

∣

X′=P̂−X

, (5.4)

it is manifestly chiral. It is easily verified that:
∫

dc̄dc S̃(1)[ciui, c̄iv
†
i , O] =

∫

dc̄dc S̃′[ciui, c̄iv
†
i , O]. (5.5)

Furthermore S(1) is a smooth functional of O since the original action S and the operators

are smooth as we assumed. Therefore, whenever Z is a “chiral partition function,” Z ′,

defined by:

Z ′ ≡
∫

dc̄dc S̃(1)[ciui, c̄iv
†
i , O] =

∫

dc̄dc
δS̃[ciu

i, c̄iv
†
i , O]

δO
δO, (5.6)

is also “chiral” and thus finite as well. By the “splitting-theorem” of section 4.2, we have

δµZ = ZJµ + Z ′. (5.7)
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Given that Z, Z ′ and Jµ are all finite, we immediately know the first variation of Z, smooth

or not, is at least finite.

We are now ready to claim, by applying the same logic iteratively, that given the

assumptions listed above (smoothness of Jµ, S̃ and O), any “chiral partition function”

Z (5.2) is smooth. This is because for ∀n ∈ Z, the n-th derivative Z(n) can always be

expressed as a polynomial in terms of some other “chiral partition functions” (which are

always finite) and some smooth functions (the measure term Jµ and its variations). This

is certainly true when n = 1 as equation (5.7) says. Assuming the hypothesis holds true

for some value of n, to prove that it remains true for n + 1 is almost trivial. Just apply

the above procedure on each “chiral partition function” appearing in the polynomial and

recall that the derivative of any smooth function is still smooth. Hence, by induction this

is true for any n. Because any “chiral partition function” is finite, so is Z(n). Therefore

Z is smooth. Again, “finiteness” here means the function is bounded within any compact

region in the gauge configuration space.9

Thus, the smoothness of the mirror partition function (and generating functional, with

source terms for the mirror fields added) implies that an analytic or numerical result that

would indicate the decoupling of the mirror sector (at strong Yukawa coupling, say, as

in [41]) at vanishing gauge background would be expected to hold at least for “nearby”

gauge backgrounds, e.g., in perturbation theory with respect to the gauge coupling. We

think that this result clearly encourages further study of mirror-sector Yukawa-Higgs dy-

namics in anomaly free models.
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6. Addendum

In the first paragraph of section 5, we discussed the resolution to the paradox posed by the

results of [41], in the situation that a dynamical gauge field is turned on. We argued that

with a dynamical gauge field, the splitting of the fermions into different chiralities used

in [41] is mathematically inconsistent, and that the numerical evidence found in [41] —

using only the singular mirror partition function and indicating a complete decoupling of

the mirror sector — can not be used to infer properties of the full theory with dynamical

gauge fields. While this claim is plausible, it does not completely explain away the paradox,

9To be mathematically precise, we remind the reader that because the basis vectors are ill-defined at

some isolated points in the gauge configuration space, the partition function Z, defined by (5.2), rigorously

speaking is only defined everywhere away from those places. However, by showing the finiteness of all

the derivatives evaluated infinitely close to those places, we have proved that those points are removable

singularities of Z, namely near any one of those points x0, limx→x0
Z(x) exists, and is well-defined and

finite. As long as we define Z(x0) = limx→x0
Z(x), Z is a smooth function on the entire gauge configuration

space.
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as it leaves still unresolved questions if the gauge field is treated as an external background.

In the interest of completeness we wish to briefly explain these questions here. We hope

to return to their detailed study in the near future.

Since the obstruction to smoothness of the light-mirror split of the partition function is

topological, given any gauge field background one can always find a choice of splitting that

is smooth locally, in a small neighborhood in gauge field configuration space near the given

point. If one treats this gauge field as a fixed external background only, some questions

still remain. We point out an interesting observation here. Suppose S = [X,Y †, O(Aµ(x)]

is any gauge invariant chiral action which satisfies:

S[X,Y †, O(A)] = S[P̂ (A)X,Y †, O(A)] = S[X,Y †P,O(A)]. (6.1)

Here P̂ (A) = 1−γ̂5(A)
2 and P = 1+γ5

2 , Aµ(x) is the external gauge field and O represents all

the operators appearing in the definition of S and typically depend on the gauge field A.

With some orthonormal bases ui and vi, which are the appropriate eigenvectors of P̂ and

P respectively, with ui chosen to be smooth with respect to A near, say, A = 0, the chiral

partition function is defined as:

Z[A] =

∫

dcidc̄i exp S[ciui, c̄iv
†
i , O(A)]. (6.2)

We would like to calculate the polarization operator of Aµ at zero gauge field background,

given by:

Πµν(x, y) ≡ δ2 ln Z[A]

δAµ(x)δAµ(y)

∣

∣

∣

∣

A=0

. (6.3)

Using the theorem of section 4.2, it is easily verified that Πµν splits into two parts.10

The first part comes from the variations of the “measure term,” due to the variation of

ln Z caused by varying the eigenvectors ui with respect to the gauge field. This part is

not interesting to us. In particular, if we embed this chiral theory into any vector-like

theory, this part is cancelled by the contributions from the fermions with opposite chirality

and that of the Jacobian. The second part of Πµν(x, y) appears while one varies ln Z by

varying the operators O(A) with respect to the gauge field. This piece is physically more

interesting. In the following discussion, we focus only on this “reduced” polarization:

Π′
µν(x, y) ≡ δ′2 ln Z[A]

δ′Aµ(x)δ′Aµ(y)

∣

∣

∣

∣

A=0

, (6.4)

where δ′ means variations with respect to A while keeping ui fixed as constant vectors.

Clearly Π′
µν(x, y) can be expressed as some complicated fermion 2-point correlators in this

theory and Π′
µν = Π′

νµ. While evaluated on a translationally symmetrical background (e.g.,

A = 0), it depends on |x − y| only.

10Notice that while computing the higher derivatives of ln Z, one must follow the procedure outlined in

section 5.

– 29 –



J
H
E
P
0
8
(
2
0
0
7
)
0
8
1

The divergence of this reduced 2-point function is easily calculated, since:

∑

µ

∇∗
µy

δ′ ln Z[A]

δ′Aµ(y)δ′Aν(z)
= − δ

δω(y)

∑

µ,x

δ′ ln Z[A]

δ′Aµ(x)δ′Aν(z)
∇µxω(x) (6.5)

= − δ′

δ′Aν(z)

δ

δω(x)

∑

µ,y

δ′ ln Z[A]

δ′Aµ(y)
∇µyω(y) (6.6)

=
δ′

δ′Aν(z)

δ

δω(x)
δ′ω ln Z[A]. (6.7)

Here δ′ω ln Z[A] is the variation of ln Z[A] under the arbitrary gauge variation Aµ(x) →
Aµ(x) −∇µω(x), while keeping the basis vectors ui fixed.

We have assumed that S is gauge invariant. Given this assumption, by equation (4.28),

δ′ω ln Z[A] is known to be exactly11 i
2Trωγ̂5, completely independent to the details of S.

It vanishes if and only if the anomaly cancellation condition is satisfied. Therefore in any

anomalous chiral theory defined with projection operators P and P̂ whose classical action is

gauge invariant, there exists a fermion 2-point correlation function defined by (6.4), whose

divergence is purely imaginary and proportional to δtrγ̂5xx/δAν(y). Even though this

expression is local, it is known that it is not the divergence of a local expression. Therefore,

the fermion correlator, as part of the gauge field polarization operator, must contain a

nonlocal contribution. The physical interpretation of this fact and its manifestation in the

1-0 model requires further studies. In particular, it will be interesting to see how it shows

up in the numerical simulations. We hope to report on this subject in follow up work soon.
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